Еще одна схема электронного предохранителя
Кто занимается ремонтом тепловозных регуляторов напряжения, таких как ППС-110 или РНВГ-110 знает, что они имеют защиту от пробоя регулирующего транзистора. Если этот транзистор(транзисторы в РНВГ) пробивается, то напряжение в бортовой сети начинает резко повышаться, что чревато выходом из строя электронной аппаратуры. Так вот, чтобы этого не происходило, в регуляторах предусмотрена защита, которая срабатывает при повышении напряжения выше определенного значения. По норме это 135 - 137 вольт. При повышении напряжения выше этого значения открывается мощный тиристор в цепи питания регулятора, создавая короткое замыкание. При этом выбивает "автомат" в составе регулятора. Регулятор обесточивается, напряжение на выходе стартер - генератора пропадает, и бортовая сеть переходит на питание от аккумулятора. Аппаратура спасена, осталось только переключиться на запасной регулятор.
Все это конечно хорошо и правильно, только вот проверять и настраивать эту защиту очень проблематично. Если у кого есть хороший источник, с защитой то и проблем нет. А вот у нас, к примеру, это просто ЛАТР с выпрямителем да автомат(SF1), который почему-то не отрабатывал при срабатывании защиты у испытуемого регулятора. Приходилось его вручную выключать, пока ЛАТР и амперметр не сгорели. Надо было это дело как-то автоматизировать. В итоге получился вот такой электронный предохранитель. И полевик для этого имелся подходящий. Он в УСТЕ применяется, поэтому есть в запасных детальках.
Схема работает очень просто. При включении питания открывшийся транзистор КТ817 подает напряжение в цепь затвора IRFP360, открывая его. Открытый полевик как проволока , имеет сопротивление 0.2 ома. Пока ток в нагрузке не превысил определенного значения, подключенная к источнику нагрузка получает питание. Как только ток в нагрузке стал достаточным для открывания тиристора, он открывается, закрывая при этом КТ817 а следом за ним и полевик. При этом загорается светодиод, сигнализируя о срабатывании защиты. После устранения перегруза нажимаем на кнопку, тиристор закрывается и схема переходит в исходное состояние.
Настраивать регуляторы теперь стало легко и просто. По загоранию светодиода контролируем и если надо регулируем напряжение срабатывания защиты в испытуемом аппарате. Вроде бы все хорошо, но у этой схемы есть недостаток. Трудно настраивать ток и время срабатывания защиты. Приходилось комбинировать кучу малоомных сопротивлений в шунте, добиваясь открытия тиристора при нужном токе. Когда с током заканчивал, нужно было настраивать задержку включения. Настраиваешь задержку, настройка по току нарушается.
В общем, нормальной задержки в данной схеме мне добиться так и не удалось. А тут мне на глаза попалась конструкция амперметра на микроконтроллере. И в ней меня заинтересовала микросхема LM358, которая используется в качестве масштабирующего усилителя мизерного напряжения снимаемого с шунта. Мне эта микросхема так понравилась, что я решил ее использовать в схеме предохранителя. В итоге схема приобрела уже вот такой вид.
Чем хорош этот операционник, это тем, что он может фиксировать очень маленькое напряжение при однополярном питании. У себя в конструкции я его использовал как компаратор. При этом для его опрокидывания достаточно напряжения, которое падает на обычном предохранителе, который в свою очередь является дополнительной защитой, если вдруг электроника откажет.
Настройка теперь тоже упростилась. Подстроечником выставляем ток срабатывания защиты, а подбором резистора и конденсатора в цепи управляющего электрода тиристора выставляем задержку. Слишком большую задержку выставлять не стоит, а то предохранитель будет сгорать быстрее, чем схема отработает. Я добивался того , чтобы защита не успевала отработать на время заряда конденсаторов в регуляторах. Трансформатор подойдет любой, маломощный, с напряжением на вторичной обмотке от 9 до 12 вольт. Если напряжение будет выше то надо подобрать сопротивление в цепи питания микросхемы, что бы ток через стабилитрон не превышал предельно допустимый.
Но это на работе мне понадобился трансформатор, иначе никак не получалось. В лабораторных источниках питания плату запитывают напряжением до регулируемого стабилизатора. У меня в домашнем источнике до стабилизатора 46 вольт. Плата потребляет 25 милиампер. Исходя из этого, вычисляем номинал балластного резистора. Так как блок питания выдает напряжение от 0 до 30 вольт, полевик можно заменить на дешовый IRFZ44N.
По параметрам он вполне подходит. Напряжение сток - исток 55 вольт, ток стока 49 ампер, сопротивление открытого канала 17,5 милиом.
Вот упрощенная схема подключения предохранителя.
Конструктивно плату А1 помещаем внутри источника, а плату А2 прикрепляем к лицевой панели, просверлив отверстия под светодиод и под кнопку. По размеру платы получились не очень большие.
Вот как все это выглядит.
Под полевик решил небольшой радиаторик подложить, так на всякий случай. Если разводить плату не хочется, то вот печатная плата в формате Sprint Layout 4.0
P. S. Как показала практика, транзистор IRFZ44N не годится для данной схемы. Почему то он пробивается уже при токе 4 - 5 ампер, хотя заявлено что держит 49 ампер. Так что ставим IRFP360 или IRFP460 , они не подведут. Плату при этом переделывать не нужно, ноги можно и проводками припаять.